EPA Fracking Findings Provide Roadmap for Meaningful Regulation

The highly-anticipated EPA study “Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States” (“study”) released in December 2016, sent shockwaves through media outlets due to a change in the language of the study’s major finding from the draft version that emerged in June 2015. The 2015 draft stated that the EPA “did not find evidence that” fracking mechanisms “have led to widespread, systematic impacts on drinking water in the United States.” In contrast, the new study revealed conclusions that describe “how activities in the hydraulic fracturing water cycle can impact—and have impacted—drinking water resources and the factors that influence the frequency and severity of those impacts.”

Because ambiguity in the study’s findings can be construed to support different sides, the study provides fuel for both anti-fracking activists and industry supporters. Nevertheless, the study also provides scientific insight into the process that can be used by state and local policy makers to create tailored regulations to mitigate potential water contamination risks. Thus far, the federal government has not passed any legislation directly addressing fracking, so much of the regulation has been left to state and local governments. Further, with the new administration’s plans to reduce the size of the EPA and roll back environmental regulation, state and local governments will likely continue to be the major source of fracking regulation.

The study provides local governments with much needed data about when risks of contamination are greatest and the factors that contribute to the occurrence and severity of contamination. Local governments can use the data to create targeted mitigation procedures and regulations to ensure that cheap energy sources can continue to be tapped while protecting valuable drinking water resources.

 

The Study

The goal of the EPA’s study was to assess the potential for activities in the fracking water cycled to impact the quality and quantity of drinking water, and identify factors that affect the frequency and severity of those impacts. The study broke down the fracking water cycle into five stages to examine the potential for contamination of drinking water during each stage. The stages and activities of the fracking water cycle are: (1) water acquisition; (2) chemical mixing; (3) well injection; (4) produced water handling; and (5) wastewater disposal and reuse. Each step will be summarized in turn along with policy recommendations.

 

Water Acquisition

Water acquisition is the first stage in the fracking process where ground water is withdrawn or surface water is transferred to make fracking fluids. The study found that fracking uses a small percentage of water relative to total water use with some notable exceptions. Notable for state and local governments, the EPA concluded that, despite fracking using a relatively small percentage of water, fracking water withdrawals can affect the quantity and quality of drinking water resources by changing the balance between other local demands. The EPA found that water management strategies could be used to reduce the frequency and severity of such impacts.

To address water acquisition concerns, local governments should explore alternative sources to be used for fracking in order to preserve freshwater resources for other uses. Incentivizing the recycling of produced water and tapping alternative resources such as brackish water to be used in the fracking process would mitigate the impact that fracking water acquisition has on local resources.

 

Chemical Mixing

Chemical mixing is the stage in the fracking process where water is mixed with sand, proppants, and other additives at the wellsite in preparation for injection. The EPA found that spills of fracking fluid and additives during chemical mixing have reached surface water resources in some cases and have the potential to reach ground water resources. Large volume spills have the greatest potential to reach ground water resources, and highly concentrated spills have the potential to most severely impact drinking water resources. Naturally, large volume spills have the potential to increase the frequency of impacts on drinking water, and groundwater impacts would likely be more severe than surface water impacts given that it is generally difficult to remove chemicals from groundwater resources.

Chemical mixing concerns require regulations to mitigate the potential for spills, especially when large volumes or highly concentrated mixtures are being handled. The oil and gas industry could play a major role in spill mitigation by adopting standard mixing and handling procedures.

 

Well Injection

Well injection is the point in the water cycle when fracking fluids are injected into a production well in order to free oil and gas molecules from the targeted rock formation. The EPA found that water in the injection stage has impacted drinking water resources due to mechanical failures that have allowed gases or liquids to move to underground drinking water resources. The study highlighted the importance of the distance of vertical separation between the targeted rock formation and drinking water resources by highlighting cases of contamination where little or no vertical separation existed between the targeted formation and drinking water resources existed.groundwater in Pavillion, Wyoming.

Geological surveying can be used to analyze whether adequate vertical separation exists between the targeted formation and drinking water resources. However, this is a limitation identified by the study because most of the geological information is proprietary to the operator and is not readily searchable by the public. The study asserts that the presence of casing, cement, and thousands of feet of rock between drinking water and the target formation can reduce the frequency or impacts during the water injection stage. However, when inadequate vertical separation exists, local governments should impose permitting requirements based on environmental impacts studies in order to mitigate instances of contamination during the well injection stage. Additionally, casing and cement integrity should be monitored before and after injection, and pressure should be monitored to ensure that the barriers did not fail during the process.

 

Produced Water Handling 

Produced water handling is the stage when water returns to the surface after fracking and is transported for disposal or reuse. The EPA found that spills of produced water during the water handling stage have reached groundwater and surface water resources in some cases. Like water spilled in the mixing stage, large volume spills have higher potential of reaching groundwater resources. Furthermore, the saline produced water can potentially migrate through soil into groundwater resources, leading to longer-term groundwater contamination.

As with mixing concerns, produced water handling impacts can be mitigated by enforcing standardized collection and handling procedures. Minimizing human error could greatly reduce the frequency and severity of spills while handling produced water. Also, creation of response mitigation plans for when spills do occur would reduce the severity of impact from spills.

 

Wastewater Disposal

The wastewater disposal and reuse stage typically involves the injection of produced water into disposal wells. Water is sometimes disposed of by using evaporation ponds and percolation pits also. Wastewater is sometimes put to beneficial uses such as irrigation if the quality is high enough, or it can be treated at water treatment facilities and discharged into surface water resources. Additionally, an increasing percentage of produced water has been reused in the fracking process. The EPA found that aboveground disposal of fracking water has impacted the groundwater and surface water in some instances, particularly where water was inadequately treated before discharge into surface water resources. Disposal in lined and unlined pits has also impacted groundwater and surface water resources, particularly because unlined pits provide a direct pathway for contaminants to reach groundwater. The EPA also noted that disposal wells have been associated with earthquakes in several states, thus reducing the availability of their use.

Each method of disposal and reuse presents unique problems that require collaboration between the industry and local governments. Increasing the availability of water treatment facilities is an attractive solution, because treated water could in turn be used for other beneficial uses. However, treatment is expensive and would likely require public and industry investment. The potential to turn produced water into useable water could help Colorado communities that have growing domestic needs as well as growing industrial needs meet their growing water demands. Funding mechanisms such as tax-exempt bonds, public improvement fees, or tax increment financing could be used get water treatment facilities built. Additionally, depending on which entity would have the legal rights to the newly cleaned water, water could be sold on the open market to help service the debt that was incurred by the entity to build the facility.

 

Conclusion

In conclusion, fracking continues to play a vital role in helping the United States achieve its energy goals. The study provides an initial roadmap of areas for local governments to target potential risks of drinking water contamination during the fracking process in a meaningful way. The study has set local governments up to create targeted mitigation procedures and regulations to ensure that cheap energy sources can continue to be tapped while protecting valuable drinking water resources.

Dalton Kelley

Sources

Envtl. Prot. Agency, Draft: Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (June 2015), https://www.epa.gov/sites/production/files/2015-06/documents/hf_es_erd_jun2015.pdf.

Coral Davenport, Reversing Course, E.P.A. Says Fracking Can Contaminate Drinking Water, The New York Times (Dec. 13, 2016),

https://www.nytimes.com/2016/12/13/us/reversing-course-epa-says-fracking-can-contaminate-drinking-water.html.

Timothy Cama, Trump Team Plans Big Cuts at EPA, The Hill (Jan. 23, 2017, 9:57 AM),

http://thehill.com/policy/energy-environment/315607-trump-team-plans-big-cuts-at-epa.

Envtl. Prot. Agency, Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (Dec. 2016), http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=530159.

 

Image: A natural gas drilling rig on the Pinedale Anticline, just west of Wyoming’s Wind River Range. WikiCommons user Bureau of Land Management, Creative Commons.”

Leave a Reply

Your email address will not be published. Required fields are marked *

Protected by WP Anti Spam